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Abstract. We propose a quantum Monte Carlo approach for the study of the thermo-equilibrium
persistent current in an Aharonov–Bohm ring with interacting electrons. From topological
considerations we derive a formula for the current, which leads to a global quantum Monte
Carlo algorithm to evaluate the global current–phase relation at a given temperature without
going into simulations point-by-point in the phase. Notable features in the present approach
are: (i) the problem of complex elements in the representation of the partition function is well-
handled, (ii) being robust against possible randomness in the Hamiltonian, the basic formula
captures all phase-dependent physics and hence makes the simulation itself extremely efficient
and reliable.

As was once mentioned by Hirsch [1], there are almost as many different quantum Monte
Carlo techniques as there are problems one wants to solve. Numerical simulation of the
many-fermion problem is difficult because of the anti-commutating rule for the fermion
fields. In particular, to the best of our knowledge, an efficient quantum Monte Carlo method
that would simulate the problem in which complex transfer matrix elements are relevant
is not yet available. In this letter we concerned ourselves with the thermo-equilibrium
persistent current in an Aharonov–Bohm ring, where the above-mentioned problem does
appear and will be solved in a unique way. We study this system because of its importance
in its own right. With the fabrication of smaller and smaller samples and the routine
availability of low temperatures, new physics mainly due to the quantum phase-coherent
effects has emerged from the studies of small devices. In particular, since the seminal
work of Büttiker et al [2], there has been much theoretical [3–7] and experimental [8]
interest in the persistent current in mesoscopic rings which enclose an Aharonov–Bohm [9]
flux: 8 = ∮

A · dl whereA is the vector potential. Recently, the numerical calculations
with interactions included in the Hamiltonian were performed by the exact diagonalization
technique [10], the Hartree–Fock approximation [11], and the Bethe ansatz solution [7].
These methods are limited to quantum mechanical calculation and are difficult to generalize
to include the effect of finite temperatures. Cheunget al [3] have studied analytically
the finite temperature behaviour of a model ring with free electrons. However, when the
interaction is present such a study is difficult or even impossible. We propose here for the
first time a novel quantum Monte Carlo approach for the study of the persistent current,
which may provide rich information on the roles played by various parameters, such as
the temperature, inhomogeneity and nature of the Coulomb interaction in a unified manner.
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Such investigations have long been desirable in order to distinguish between different origins
of the experimental results.

Our approach is closest in spirit to a general quantum Monte Carlo method for fermions
developed by Hirsch, Scalapino and Sugar (HSS) [12]. The distinguishing advantage of
our approach is that the basic formula we derived captures all phase dependence in the
partition function and thus makes the simulation procedure itself extremely practical and
efficient: theglobal current–phase characteristics at a given temperature can be obtained
from a single round of simulations,without going into simulations point-by-point in the
phase. Our method is based on the consideration of topology and may thus be applicable to
a large amount of topologically equivalent systems in condensed matter physics other than
the mesoscopic ring considered here.

To simplify the presentation, we begin with the model Hamiltonian forM spinless
fermions in a one-dimensional ring ofN lattice sites in a magnetic field:

H =
∑

i

εini − t

[∑
i

eiθC
†
i Ci+1 + h.c.

]
+ V

∑
i

(
ni − 1

2

)(
ni+1 − 1

2

)
(1)

where ni = C
†
i Ci , C

†
i and Ci are the usual fermion creation and annihilation operators

in the Wannier state at theith lattice site andεi is the on-site energy, which can be
either uniform or random fromi to i ′. Here t > 0 is the hopping matrix element, and
θ = ϕ/N = 2π8/N80 where8 is the magnetic flux threading the ring and80 = h/e is
the flux quantum. FinallyV is a measure of the short-range (nearest neighbour) Coulomb
interaction between the fermions. We shall limit ourselves in the case of the spinless
fermions described by equation (1) as far as the Monte Carlo method is concerned. The
possibility to include the spin-degrees of freedom and randomness in the hopping matrix
elementt and the local phaseθ (with the total phaseϕ unchanged) will be discussed in the
following development.

From the Trotter formula the partition function forM fermions at a temperatureT can
be written as [12, 13],

ZM = TrMe−βH ≈ TrM(U1U2)
L =

∑
i1,i2,...,i2L

〈i1|U1|i2〉〈i2|U2|i3〉 · · · 〈i2L|U2|i1〉 (2)

where U1 = e−1τH1, U2 = e−1τH2 with 1τ = β/L and β = 1/kBT , and a complete
set of states (in the lattice-occupation representation) at each time slice are inserted.
Here the total Hamiltonian has been broken up as the sum ofH1 and H2, each of
which is composed of sums of pieces that commutate piece-wise between themselves. In
particular, for the Hamiltonian given in equation (1), the decomposition can be made as
H = H1 + H2 = ∑

odd i Hi,i+1 + ∑
even i Hi,i+1 with

Hi,i+1 = −(t eiθC
†
i Ci+1 + h.c.) + V

(
ni − 1

2

)(
ni+1 − 1

2

)
+ 1

2

(
εini + εi+1ni+1

)
. (3)

The error in equation (2) is of order(1τ)2 [12]. The evaluation of the matrix elements
in equation (2) reduces to solving a two-site problem. A graphical representation of the
element in equation (2) for a 4-site ring with two fermions is the checkerboard lattice shown
in figure 1 (see also [12, 13]). The shaded regions indicate sites which are connected by the
time evolution operator. Each element in equation (2) is a product of all of the sub-elements
represented by the shaded boxes on the checkerboard. The sum over intermediate states in
equation (2) can be performed by importance sampling if the elements are real and non-
negative. For convenience, world lines can be drawn for each fermion as in figure 1. As
pointed out in [12], sinceHi,i+1 conserves fermion number locally in a shaded box, a world
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line can only be moved at a given time interval if it is running along a vertical edge of a
shaded box. In that case it can be moved across the adjacent unshaded box. The Boltzmann
factor for such a move depends only on the occupation states of the four shaded boxes
connecting that unshaded box. It is important to note that due to the local conservation
law for the fermion number, world-lines never move diagonally in an unshaded box. The
efficiency of the above updating rule is the major advantage of the HSS algorithm.

Figure 1. A checkerboard lattice (not completely shown) for a
4-site ring withM = 2 fermions. The horizontal direction is
the spatial direction, and the vertical direction is the imaginary
time (Trotter) direction. World-lines for the fermions are shown
by the bold lines.

Being slightly different from the definition given in [12], we find it convenient to define
the winding number of an allowed configuration in the following manner. First we assign
a ‘charge’ numberns = 0 to a shaded box with no fermions, or with fermions moving
forward, and a ‘charge’ numberns = +1 (ns = −1) to a shaded box with a fermion
moving north-west (north-east) (see figure 1 for guidance). Note that a shaded box with
two fermions crossing each other is equivalent to that with two fermions moving forward.
Then the winding numbern is simply evaluated asn = ∑

s ns/N where the summation is
over the shaded boxes on the whole checkerboard. Due to the cyclic boundary condition
in the imaginary-time (or Trotter) and the spatial directions, it is found that the allowed
values ofn are n = 0, ±1, ±2, . . ., and thatn is conserved during the updating process
described above. Therefore eachn identifies a specific topology of the configuration.
All of the configurations with the samen form a subspace of the total space spanned
by all of the allowed configurations. Furthermore, the total ‘charge’ in each column of
the checkerboard in our case is identicallyn. These findings will simplify the following
derivation considerably.

It can be seen that in our case, the elements in equation (2) are complex in general
(although the complete summation is indeed real). A direct sampling from the partition
function ZM becomes invalid. Instead, one must use an auxiliary partition function

Z̃M =
∑

i1,i2,...,i2L

|〈i1|U1|i2〉〈i2|U2|i3〉 · · · 〈i2L|U2|i1〉| (4)

where the modulus operation is applied for each element. A remarkable feature ofZ̃M

is its independence ofθ (or ϕ), as we shall show immediately. By solving the two-
site problem, we find that to an element inZM (being a product of all the sub-elements
represented by the shaded boxes), a shaded box involving the operator e−1τHi,i+1 with
‘charge’ns contributes a sub-element ei ns [θ+(M−1)πδi,N ]0s whereδi,N is the usual Kronecker
delta function,0s is a box-dependent,θ -independent and positive-definite quantity, and the
extra-phase(M − 1)πδi,N follows from the anti-commutating rule for the fermion fields.
We do not need the details in0s here, which will be presented elsewhere. Recalling our
lemma about the ‘charges’ of the shaded boxes, we can write the over-all product of these
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sub-elements, namely, one of the elements inZM , as eiφ
∏

s0s with the total phaseφ given
by φ = ∑

s nsθ + n(M − 1)π = n[ϕ + (M − 1)π ]. Therefore, each element iñZM (for
allowed configurations) is positive-definite andθ -independent. Consequently,

ZM

Z̃M

=
∑

k

P (k)ei n(k)[ϕ+(M−1)π ] =
∑

n

Pnei n[ϕ+(M−1)π ] (5)

whereP(k) is the ‘Boltzmann weight’ of a particular configuration (with a winding number
n(k)) in the auxiliary partition functionZ̃M , andPn is a partial summation of the weights
of all those configurations with a given winding numbern. It should be pointed out that
equation (5) is a topological consequence of the form of the Hamiltonian in equation (1),
irrespective of the randomness in the lattice site energyεi . A closer inspection reveals
that equation (5) is also true even if there is randomness in the hopping matrix element
t and the local phaseθ (so long as the total phaseϕ remains unchanged). SincePn is
independent ofϕ, the above equation serves in a unique way as an independent verification
of the well-known conclusions that all equilibrium magnetic-field-dependent physics in the
ring should be periodic in8 with a period80, and that the relevant physical quantities for
even and odd number of electrons are offset in8 by 80/2 [6, 7].

Interestingly, if we ignore the anti-commutating rule of the fermion fields (e.g., in the
case of a hard-core Bose system), equation (5) will be replaced byZM/Z̃M = ∑

n Pnei nϕ ,
which resembles the counterpart for a one-dimensional Bose system addressed by Pollock
et al (see [14], equation (20)), who were able to evaluate the superfluid density from the
winding number distribution. However, the important point in the present case lies in the
Pauli interaction inherent in the Fermi statistics. In addition, equation (5) can also be
obtained, in principle, by performing a gauge transformation [15]. The derivation presented
here seems more straightforward.

Let us now consider the thermo-equilibrium persistent current pertaining to the
mesoscopic ring,〈J 〉, where the current density operatorJ is given by

J = − iet

Nh̄

∑
i

(eiθC
†
i Ci+1 − e−iθC

†
i+1Ci) (6)

where −e is the electron charge. Conventionally, one would have to do simulations
for the current–phase relation point-by-point in the phaseϕ. Furthermore, since the
configurations withn = 0 never contribute in average to the current, although they make
major contributions to the average internal energy [12], a naive implementation of the HSS
algorithm by keeping only then = 0 configurations would fail to give the correct current–
phase relation. To get around this problem, it is essential to consider configurations with
n 6= 0. These facts motivate us to consider the following way to perform an average for
the current.

The first step in our approach is to write the average current as

〈J 〉 = ekBT

h̄

∂

∂ϕ
ln ZM = ekBT

h̄

∂

∂ϕ
ln

ZM

Z̃M

(7)

where−kBT ln ZM = F is the free energy of the canonical ensemble. The second equality
reflects the fact that̃ZM is independent ofθ (or ϕ). The second step is to devise a Monte
Carlo procedure that enables an importance sampling of all allowed configurations with
different winding numbers. This can be achieved in a manner similar to that described
in [12]. Consider the following free-boundary auxiliary partition function (also withM

fermions)

ZM =
∑

|〈i1|U1|i2〉〈i2|U2|i3〉 · · · 〈i2L|U2|i1′ 〉| (8)
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where the ends of the world-lines (at the time slicesi1 and i1′ ) are now allowed to move
horizontally across the shaded box when there is only one fermion in that box. In this
way, new configurations with different winding numbers can be obtained. The Monte
Carlo sweeps are done with respect toZM , and whenever the states|i1〉 and |i1′ 〉 coincide,
the configuration is sampled out. The expense of this technique is the running time for
the intermediate configurations. All averages are done with respect to thosesampled
configurations. The probability that a particular configuration is sampled in a sequence of
sampled configurations is exactly proportional to the corresponding ‘Boltzmann weight’ in
Z̃M (rather thanZM ). In particular,Pn is simply the relative population of the configurations
with a winding numbern.

Furthermore, due to the time reversal symmetry built intoZ̃M and ZM , theoretically
one always hasPn = P−n in the case of a homogeneous system. This is also true in the
case of a random system since the world-lines self-average over the checkerboard in view
of statistics. Thus equations (5) and (7) give

〈J 〉 = ekBT

h̄

∂

∂ϕ
ln

∑
n

Pn cos{n[ϕ + (M − 1)π ]} (9)

which is the essential ingredient in our approach. Clearly, the advantage of the present
algorithm lies in the fact that the global current–phase relation can be obtained once the
ϕ-independentPn are obtained, in contrast to the usual algorithm where the current–phase
characteristics would have to be simulated point-by-point inϕ. In addition, since only the
population of the winding numbers need to be monitored in the simulation, the procedure is
extremely simple. Finally, since the current is not evaluated from two independent averages,
as would be the case if the previous Monte Carlo algorithms are naively implemented in the
present case, the accuracy of the present algorithm is expected to be better. The computation
time in each Monte Carlo sweep scales linearly with the area of the checkerboard (i.e., the
number of the spatial sites times the number of the Trotter sites) [12].

For brevity, we defineI = 〈J 〉 and f = ϕ/2π hereafter. The solid lines in the main
panel of figure 2 are our Monte Carlo simulation results of the current–phase characteristics
at a temperatureT = t/8kB for a 4-site ring withM = 2 electrons (εi = 0) at various
interaction strengths (only the casesV = 0, 2t, 4t are selected). The dashed line in the main
panel shows the corresponding theoretical results atV = 0 for this canonical ensemble†.
Finite size effects (due to finiteL) in the simulations are minimal provided thatL > 2N

and1τt 6 0.5. The good agreement between our simulation result and the exact analytical
result for V = 0 in figure 2 lend support for our method. The top-left inset in figure 2
shows the population distributionPn of the winding numbern at V = 0, which is similar
to a Gaussian distribution. The bottom-right inset in figure 2 shows more complete results
for the interaction dependence of the maximum persistent current at the given temperature.
One can see that the persistent current is suppressed more prominently at relatively stronger
interactions (V > 2t). In fact, in the thermodynamic limitN → ∞, the half-filled spinless
Hubbard model exhibits a zero-temperature phase transition from the normal liquid phase
at 0 6 V 6 2t to the Mott insulator phase atV > 2t [5]. The persistent current in
the Mott phase vanishes. We shall return to this point later (see figure 4). Figures 3(a)
and (b) show the current–phase characteristics at a sequence of temperatures in a 20-site
ring with M = 12 free and interacting electrons, respectively, where1τt = 0.16 in the
simulations. Figure 3(c) shows the persistent current (with errors of the symbol size) at
f = 0.25 versus temperature, from which a quasi-exponential decay beyond a cross-over

† In the case of free fermions, the canonical ensemble partition function TrMe−βH can be obtained with the
diagonalized Hamiltonian in the Bloch state.
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Figure 2. Current–phase characteristics for a 4-site ring withM = 2 electrons at a temperature
T = t/8kB and at various interaction strengths. HereI0 = et/4h̄. The left inset shows the
correspondingPn versusn from the Monte Carlo simulations forV = 0. The right inset shows
the interaction dependence of the maximum persistent current at the given temperature.

Figure 3. Current–phase characteristics for a 20-site ring withM = 12 electrons (εi = 0).
Here I0 = et/20h̄. (a) V = 0, βt = 18, 17, . . . , 11 for the curves with decreasing order in the
amplitude. (b) The same as (a) except thatV = 2t . (c) The current atf = 0.25 versus the
temperature.

temperatureT ∗ ∼ 0.05t/kB is evident for each curve. At the low temperature side, the
currents saturate to the zero-temperature limits. Note that the closerϕ is to ϕm, where
the free energy is a maximum, the lower the saturating temperature. Hereϕm = 2nπ and
(2n + 1)π for even and odd number of electrons, respectively. Although the system we
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Figure 4. Size dependence of the zero-temperature-limit stiffness int the half-filled spinless
model at various interaction strengths. (a)V/t = 0, 1, 2. The dashed lines are linear 1/N

extrapolation lines; (b)V = 4t . The dashed line represents exponential fitting.

are dealing with is a canonical ensemble, the above-mentioned behaviour is consistent with
the picture in [3], although the system they considered was agrand canonical ensemble for
free electrons. It is also clear from figure 3(c) that in this non-half-filled sector, the current
is not suppressed byV in the zero-temperature limit. This is understandable because away
from the half-filled sector, the nearest-neighbour interaction plays a progressively smaller
role.

The so-called charge stiffnessDc, defined as

Dc = N

2

∂2F

∂ϕ2

∣∣∣∣
ϕ=ϕc

where F is the free energy andϕc is the value ofϕ at which F develops a minimum,
can be obtained analytically for the spinless model in the thermodynamic limit at zero
temperature in the half-filled sector [5]. From equation (5) it is also simply related to
the above-mentioned winding number distribution asDc = (N/2β)

∑
n n2Pn. The latter

summation is nothing but the average square winding number. Notice that in the Bose
system the stiffness corresponds to the superfluid density [14]. To compare our results with
the analytical results [5], we have performed Monte Carlo simulations for various system
sizesN and inverse temperatures. For the stiffness, we found no discrepancies between
the results atβ = N and β = 2N beyond the statistical error and thus take the results at
this level of low temperatures as the zero-temperature limits. It deserves mentioning that
exclusively in the half-filled sector, we do not need to open the checkerboard boundary
at the Trotter direction to update the winding number. It is necessary to only include a
global update procedure in the spatial direction whenever the occupation state in a time
slice is a pure charge-density-wave-like state 10101010. . .. This speeds up the simulations
profoundly and enables us to simulate larger systems. The results forV/t = 0, 1, 2 versus
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the system size are plotted in figure 4(a). The symbols on the vertical axis are analytical
results [5]. Evidently, as 1/N → 0, the extrapolated value from our Monte Carlo results
agree excellently with the analytical results forV/t = 0, 1. The linear 1/N extrapolation
for V = 2t does not yield the rigorous result 1/4. This can be clearly attributed to the
following facts. On one hand, sinceV = 2t is the critical interaction for the liquid–Mott-
insulator phase transition [5], the fluctuations in the system are strong and thus render a
slightly poorer statistical accuracy. On the other hand a power-law instead of linear 1/N

extrapolation may be more appropriate. Figure 4(b) shows the size dependence of the zero
temperature limit stiffness atV = 4t , from which we are able to extract the correlation
length ξ = 10.38 by fitting the stiffness asDc ∼ exp(−N/ξ). The fittedξ is appealing
compared with the analytical valueξ = 10.58 at the same interaction strength [5].

Although we have only worked with the spinless Hamiltonian, the present algorithm
can be easily generalized to a variety of more complex Hamiltonians, such as the coupled
boson-fermion system and the system with spin-degrees of freedom included (in the absence
of spin-flip interactions) addressed in [12]. The idea in this paper is also applicable to other
topologically equivalent condensed matter systems, for example, the system with confined
hard-core bosons considered in [16]. In addition, we have performed simulations for
disordered rings with interacting spinless electrons and have found that both the interaction
and the disorders suppress the amplitude of the persistent current. The details, with and
without spin degrees of freedom for clean and disordered rings with general Coulomb
interactions will be published elsewhere.

This work is supported by the RGC grant of Hong Kong under Grant No HKU262/95P and
the National Center for Research and Development on Superconductivity of China.
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